
Optimising with more than one variable 
 
Partial differentiation 
 
When we have a function of more than one variable, we can use partial 
differentiation to find the rate of change of the function with respect to any 
of the variables. 
 
Let F(X,Y) be a function of two variables. Then the partial differential of F 
with respect to X, written 

X
F
∂
∂ , is obtained simply by differentiating F(X,y) 

with respect to X, holding Y constant, i.e. treating the function as if it were a 
function only of X, with Y a constant parameter. Similarily, the partial 
differential of F with respect to Y, 

Y
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∂ , is obtained by differentiating F with 

respect to Y, treating X as a constant. 
 
Formally, the partial differentials at the point (a,b) are given by: 
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Example 
 
Consider a Cobb-Douglas production function, given by 
 
Q = aKαLβ , where Q is output, K is capital and L is labour, and α and β are 
constants. 
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We may of course have functions of any number of variables, for example 
F(X,Y,Z), a function of 3 variables. We may take partial differentials with 
respect to any of the variables. 
 
 
Stationary points of functions of two variables. 
 
Simple optimisation in 2 variables is quite similar to one variable: 
 
A stationary point occurs when all partial differentials are equal to zero. 
This can be a local maximum, a local minimum, or a saddle point. 
 
In other words, where the function is momentarily flat with respect to 
changes in any variable. 
 
To find out the nature of the stationary points, we need to look at the second 
partial derivatives at the stationary point. 
 
Second partial differentials 
 
If F(X,Y) is a function of two variables, we may define the second partial 
derivatives as follows: 
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The second partial derivative of F wrt Y, )(2
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The cross-partial derivative of F with respect to X and Y, 
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Example 
 
Continuing with the CD production function,  
 

Q = aKαLβ, we had βαα LKa
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we perform the two differentiations in. 
 
Classifying stationary points of functions of two variables 
 
The nature of a stationary point of a function of two variables depends, 
unfortunately, on all the second partial derivatives. 
 
Suppose F(X,Y) has a stationary point at (a,b). 
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Then (a,b)  is a local maximum if A<0 and AB-C2>0, a local minimum if 
A>0 and AB-C2>0, and a saddle point if AB-C2<0. (Indeterminate if AB-
C2=0). 
 
A saddle point will appear to be a local maximum from some directions, and 
a local minimum from others – like a saddle. 
 
Example 
 
Let F(X,Y) =  X2-2Y2+6XY-4X+3Y                                                                                           
Then 
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And 
Y
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Setting these both to zero to find the stationary points gives 
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6X-4Y=-3 
 
Whence Y=15/22 and X=-1/22 
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of X and Y), which means that the stationary point is a saddle point. 
 
Convex and concave functions 
 
As in the single variable case, the problem of finding a global maximum or 
minimum can be more difficult than finding a local optimum. Global optima 
can occur either at one of the local optima, or at a corner solution. 
 
However, the picture is again clearer for convex and concave functions. 
 
A function F(X,Y) is said to be convex over a range of values A of X and Y 

if at all points (x,y) in A, we have 0),(),(),(
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These definitions lead to the following results: 
 
If a function F(X,Y) is convex over a region (range of values) A, then any 
local minimum in A is a global minimum for that region. If F(X,Y) is 
concave on A, then any local maximum is a global maximum on A. 
 
Non-negativity constraints 
 
If we are seeking to maximise F(X,Y) subject to the conditions that X≥0 
and Y≥0, analogous conditions apply to the 1 variable case: 
  



At the maximum value of F(X,Y), we must have δF/δX≤0, with δF/δX=0 if 
X>0, and δF/δY≤0, with δF/δY=0 if Y>0. 
 
Note that these are not sufficient conditions for a local maximum (we could 
have a local minimum or a saddle), and certainly not a global maximum, so 
in general we may have to check a number of different possibilities. While 
we can check whether we have a local maximum, minimum or saddle using 
second derivatives for an interior solution (where X and Y are both greater 
than 0), this is not so straightforward where one variable is equal to zero. 
The conditions for the minimum value are analogous, remembering that 
minimising F(X,Y) is the same as maximising –F(X,Y). 
 
A solution to an optimisation problem with non-negativity constraints where 
one of the variables is equal to zero, is again known as a boundary solution. 
A solution with all variables strictly greater than zero is an interior solution. 
 
Functions of several variables 
 
We shall look briefly at the question of finding and classifying stationary 
points of more than two variables. The process is entirely analogous, but 
requires the machinery of matrix algebra, which we are not covering here. 
 
Let F(X1,….Xn) be a function of n variables. A stationary point of F will 
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To decide what type of stationary point we have, we need to look at the 
Hessian matrix of second partial derivatives. This is an n by n array or 
matrix as follows: 
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The type of stationary point will depend on the properties of the Hessian 
matrix at that point, but the details are beyond the scope of this course. 
 


